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Abstract

This paper studies the role of truly independent nonlinear factors in asset pricing.

While the most successful stochastic discount factor (SDF) benchmarks pricing the

cross-section of stock returns are obtained from regularized linear principal compon-

ents of characteristic-based returns we show that allowing for substitution of some

linear principal components by independent nonlinear factors consistently improves the

SDF's ability to price this cross-section. We use the Fama-French 25 ME/BM-sorted

portfolios, �fty anomaly portfolios, and �fty anomalies plus characteristic-based in-

teraction terms to test the e�ectiveness of the nonlinear dynamic factors. The SDF

estimated using a mixture of nonlinear and linear factors outperforms the ones using

solely linear factors or raw characteristic returns in terms of out-of-sample R2 pricing

performance. Moreover, the hybrid model �using both nonlinear and linear principal

components� requires less risk factors to achieve the highest out-of-sample performance

compared to a model using only linear factors.
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1 Introduction

The search for a parsimonious stochastic discount factor (SDF) that can explain a

large cross-section of equity returns is central to empirical asset pricing. The recent

contribution of Kozak et al. (2020) shows that a large cross-section of characteristics-

based portfolios can be shrunk to a few principal components that make up a SDF

with a robust predictive out-of-sample pricing performance. This departs from the

previous literature, where a limited number of factors predicted the variation of a

given cross-section of characteristics-based portfolios. As this cross-section enlarged

and new characteristics emerged, the number of factors increased from three in (Fama

and Kenneth (1993)) to four in (Hou et al. (2015)), �ve in (Fama and French (2015)),

and six in (Barillas and Shanken (2018)). Kozak et al. (2020) show that restricting the

SDF to a few characteristics-based factors does not adequately capture the cross-section

of expected returns. A sparse SDF with a few high-variance principal components

produces a good and robust out-of-sample �t of the cross-section of expected returns.

The above-mentioned achievements make clear the importance of performing trans-

formations of the original set of raw returns in order to obtain a robust SDF. In this

paper, we move one step further by studying how changing the metric in which raw

information is transformed in (potential) SDF factors a�ects this SDF's pricing per-

formance on a �xed cross section of returns. While Kozak et al. (2020) use a Bayesian

method based on a quadratic criterion we adopt an entropic criterion, which brings

novel statistical properties to the extracted factors. We build on the recent theoret-

ical developments of Gunsilius and Schennach (2021) who using a multivariate additive

entropy decomposition generalize the principal component analysis (PCA) to a nonlin-

ear setting. Their nonlinear principal components analysis delivers truly independent

factors (as opposed to the uncorrelated factors of PCA) that maximize the percent of

entropy information from the original cross-section of raw returns that is explained by

the nonlinear factors.

Our main empirical contribution is to show that, for di�erent �xed cross-sections

of returns, when a small number of nonlinear principal components is allowed to com-

plement/substitute factors on an SDF based on linear principal components, the non-

linear SDF consistently outperforms the linear speci�cation and with fewer factors. To

better understand the additional value of nonlinear principal components in pricing
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the cross-section of returns, we apply the new methodology to the Fama-French 25

ME/BM-sorted portfolios. While the Fama-French three-factor linear model has been

the workhorse of the asset pricing literature, it did not explain well the returns of ex-

treme portfolios, especially the small-growth one, where nonlinear relations between

portfolios and factors may be present. Next, we explore the set of �fty anomaly port-

folios built by Kozak et al. (2020) using individual stock characteristics to assess the

predictive ability of a stochastic discount factor combining both linear and nonlinear

factors. Lastly, we use the big data set of 2600 portfolios proposed by Kozak et al.

(2020), which includes the �fty raw characteristic excess returns plus 2550 interaction

terms obtained by crossing the characteristics of the stocks (two by two and adding the

third power of each characteristic) and aimed at capturing nonlinearities. Adding non-

linear principal components to linear factors increases substantially the out-of-sample

R2's for the di�erent cross-sections of returns under consideration.

The numerical procedure used to extract the nonlinear principal components pro-

ceeds in several steps. We start with n variables that are potential predictors of future

returns and extract n linear principal components in the usual way. We then select

the k linear factors having the largest eigenvalues (variances) and apply the algorithm

of Gunsilius and Schennach (2021) to capture nonlinear forms of dependence through

truly independent factors. The approach relies on the theory of Brenier maps Brenier

(1991), which are a generalization of monotone functions in multivariate settings, and

on the use of entropy1 to determine the principal nonlinear components that capture

most of the information content of the data, instead of variance for linear principal

components. Another important ingredient is a multivariate additive decomposition of

the entropy into one-dimensional contributions.

Entropy as a measure of dispersion has received considerable attention in the asset

pricing literature. The main focus has been on extracting SDFs from observed asset

prices in the spirit of Hansen and Jagannathan (1991) who minimize the variance of

the SDF subject to asset pricing restrictions. Minimizing the entropy involves higher

moments of the distribution of asset returns and captures nonlinearities in the pricing

kernel or non-Gaussianity in returns. Stutzer (1995) suggests a nonparametric bound

to test asset pricing models based on entropy minimization, while Bansal and Lehmann

1See Shannon (1948), Kullback (1997), Csiszar (1991), and the other references cited in Gunsilius
and Schennach (2021).
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(1997) propose a related entropic bound that is obtained by maximizing the growth

portfolio. Backus et al. (2011) tests disaster-based models based on this entropic bound.

Several papers derive pricing kernels based on entropy. Alvarez and Jermann (2005)

provide a decomposition of the pricing kernel into permanent and transitory compon-

ents, while Ghosh et al. (2016) propose a factorization of the SDF into an observable

component (a parametric function of consumption) and an unobservable nonparametric

one. Backus et al. (2014) characterize the pricing kernel entropy and its dynamics for

several representative agent models. Chen et al. (2020) use a statistical measure of

discrepancy that extends relative entropy to recover information about investor beliefs

embedded in forward-looking asset prices in conjunction with asset pricing models. Al-

meida and Garcia (2012, 2017) minimize a large class of divergence measures which

includes entropy under asset pricing restrictions and derive information bounds as well

as misspeci�cation measures.

Since the nonlinear factors are not tradable by nature, we construct mimicking

portfolios to extract tradable factors to be priced alongside with the linear principal

components. For robustness purposes, we proceed in three manners. First, we per-

formed a linear regression of the nonlinear factors on the �fty anomaly excess returns

including a constant term. Second, we add one more asset, the CRSP value-weighted

index, in the previous (�rst) regression. Third, we add an option on the market, to the

previous (second) regression. In this third regression, we approximate the nonlinear

principal components using a piecewise function to take into account their nonlinear-

ities (see Glosten and Jagannathan (1994), and Diez De Los Rios and Garcia (2011)).

Therefore, the mimicking portfolios are the predicted nonlinear factors from the regres-

sions. We then use these mimicking portfolios along with the linear factors or linear

principal components to estimate the stochastic discount factor or to predict future

expected returns under the set up of Kozak et al. (2020). In the �nal step of our

methodology, we regress the expected returns of di�erent sets of tradable factors on

the covariance matrix of di�erent set of factors under Elastic-Net and Ridge penalties,

and then, assess the accuracy of these regressions by computing the out-of-sample and

in-sample cross-sectional R2. We use the 3-fold cross-validation procedure of Kozak

et al. (2020) to compute the out-of-sample R2.

This paper is related to three strands of literature. First, the vast literature on

nonlinear principal components. Papers here include Kramer (1991), Schölkopf et al.
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(1998), Roweis and Saul (2000), Lee and Verleysen (2007), Chen et al. (2009), Lawrence

(2012), and Damianou et al. (2021) among others. Recall that traditional principal

components are extracted under the assumption of independence and stationarity of

the raw random variables, which are then rotated to obtain uncorrelated linear factors

chosen to maximize the explained variance of the original variables. While all the

above-mentioned methods use variations and / or generalizations of the traditional

principal components method which go from relaxing independence (Chen et al. (2009))

to applying traditional PCA to an augmented features' space via �the kernel trick�

(Schölkopf et al. (1998)), they all obtain factors that maximize the explained variance

of the original raw data using a quadratic criterion. In contrast, we build on Gunsilius

and Schennach (2021) who �nd factors that are truly independent by construction and

that maximize an aggregate measure of the entropy of the original raw random variables.

In this context, our paper is the �rst to empirically test these entropic dynamic factors

in an asset pricing application involving the identi�cation of a SDF that prices the

cross-section of stocks.

Second, this paper is related to the new growing literature on machine learning asset

pricing models (Feng et al. (2018), Nakagawa et al. (2019), Chen et al. (2020), and

Fang and Taylor (2021)). It provides a test for the e�ectiveness of using an alternative

dimension reduction technique (based on entropy as a metric) to price the cross-section

of stock returns. Third, this paper is also related to the strand of literature on the

stochastic discount factor estimation using a given set of factors. Papers here include

Fama and Kenneth (1993), Hou et al. (2015), Fama and French (2015), Barillas and

Shanken (2018) and Kozak et al. (2018). While all these models bet on linear factor

models we show that obtaining nonlinear dynamic factors can bring additional valuable

information to price the cross-section of stock returns.

Our paper is also closely related to Gunsilius and Schennach (2021) and Kozak et al.

(2020) in terms of methodology. However, there are key di�erences between this paper

and theirs. Compared to Gunsilius and Schennach (2021) �which is mainly theoretical

and did a simple application to predict bond excess returns using directly non tradable

factors (nonlinear principal components) conjointly with tradable factors�, our paper

sheds light on how to better adapt empirically the theory of truly independent nonlinear

factors to an asset pricing context. We use the stock market as opposed to the bond

market and the (tradable) mimicking portfolios analysis as opposed to the non tradable
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portfolios analysis in Gunsilius and Schennach (2021). Compared to Kozak et al. (2020),

our analysis uses a set of truly independent nonlinear factors and linear factors. This

hybrid method delivers compelling out-of-sample performance measured by the R2.

The remainder of the paper is organized as follows. Section 2 explains the methodo-

logy to extract the independent nonlinear components and to construct the stochastic

discount factor to price the various sets of portfolios. Section 3 describes the construc-

tion of the data. We report the results of our analysis in Section 4 and conclude in

Section 5.
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2 Methodology

We �rst describe the steps to follow to construct the nonlinear factors, then we specify

the estimation procedure of the stochastic discount factor.

2.1 Nonlinear Principal Components

Let us consider n portfolios whose excess returns are stacked in a 1 × n vector r =

(r1, r2, ..., rn). One would like to reduce the dimensionality of the space of these n

portfolios to k < n factors. The most common way is to take the �rst k linear prin-

cipal components. This dimension reduction operates by �nding successively the linear

combination of the portfolio returns that explains the largest share of the variance-

covariance matrix of the original set of portfolios, with the condition that each success-

ive principal component is uncorrelated with the previous ones. The intuition is that

we search for a line along which the points are the most dispersed, with the variance as

a measure of dispersion. However, the principal component analysis can be generalized

to explore nonlinear data representations. Gunsilius and Schennach (2021) propose

to use entropy, as another concept of dispersion, to determine the most informative

principal nonlinear components. Moreover, the method delivers independent instead of

uncorrelated factors.

Let us suppose that r has a density function denoted g(r). The idea of extracting

truly independent nonlinear factors is to �nd a map T : Rn 7−→ Rn transforming g(r)

into a target density Φ(r̃) where r̃ = T (r). The change of variable formula yields an

expression of the original density function in terms of the target density function and

the Brenier map as follows :

g(r) = Φ(T (r))det(
∂T (r)

∂r′
) (1)

First, we need to estimate the mapping function T by minimizing the distance between

a nonlinear transformation of the data T (r) and the original data r. We want to take

into account a possible nonlinear relationship between the portfolios and yet, we do not

want to depart too much from the original portfolios. Hence, T minimizes∫
‖T (r)− r‖2g(r)dr (2)
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The known solution of this minimization problem (Monge-Kantorovich-Brenier optimal

transportation problem) is T (r) =
∂C(r)

∂r
, where C is a convex function. The function

C can be estimated using a grid point procedure or an approximation procedure. This

paper uses the grid point procedure. Second, we extract k eigenvectors e = (e1, e2, ..., ek)

corresponding to the k largest eigenvalues of J̃ de�ned by :

J̃ = −
∫
g(r)log

∂T (r)

∂r′
dr (3)

Finally, the ith nonlinear principal component is de�ned by : f̃i = T (r)ei (versus

fi = r × ẽi in the linear case). This is a nonlinear transformation of the original

portfolio returns because T is a nonlinear function unless r is a Gaussian process.

The nonlinear transformation of the portfolio returns implies that the new factors,

F̃ = (f̃1, f̃2, ..., f̃k) are not tradable in the sense that their returns cannot be obtained

as a linear combination of the original portfolios of assets. We therefore resort to the

usual procedure of forming a mimicking portfolio for each nonlinear factor -in order to

see which asset will be long and short - before the estimation of the stochastic discount

factor. We explain in Section 3.2 the various regression methods we used to obtain the

mimicking portfolios.

2.2 Stochastic Discount Factor estimation procedure

We assume that the Stochastic Discount Factor (SDF) is an a�ne function of the

factors, as follows :

SDFt = 1− λ′(Ft − µ) (4)

where λ is a K × 1 vector of factor loadings, Ft is a K × 1 vector of risk factors and

µ = E(Ft) is a K × 1 vector of factors' mean. We make two additional assumptions

about the factors: �rst, we suppose that µ is random and follows a normal distribution,

and second, we consider that Σ = Cov(Ft) is known.

µ ∼ N (0,
κ2

τ
Ση) , τ = tr[Σ] (5)
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where κ is a scale parameter and η is a shape parameter which we set its value to

2. Because we also suppose that there is no near-arbitrage opportunities, we want

the Sharpe ratio of high-eigenvalue principal components (PCs) to be higher than the

Sharpe ratio of the low-eigenvalue PCs (which is economically plausible since the latter

do not bring much risk premium, as emphasized in ?). The stochastic discount factor

should satisfy the law of one price:

E(SDFt × Ft) = 0 (6)

The equation 6 is in line with the characteristics-based factor model literature. We fol-

low Kozak et al. (2020) procedure to estimate the stochastic discount factor. Basically,

λ solves the following minimization problem:

λ̂ = argmin
λ

(µ− Σλ)′Σ−1(µ− Σλ) + γ1

k∑
i=1

|λi|+ γ2λ
′λ, (7)

that is we minimize the HJ-distance subject to an Elastic-net/Ridge constraint. Under

the assumption that η = 2, γ1 = 0, and therefore γ2 =
τ

κ2T
, the expected maximum

squared Sharpe ratio is equal to the squared scale parameter :

E(µΣ−1µ) = κ2 (8)

Under the ridge shrinkage hypothesis γ1 = 0, we obtain

λ̂ = (Σ + γ1I)−1µ

. Under the Elastic-Net shrinkage hypothesis, we use the Least Angle Regression (LAR-

EN) algorithm2 to estimate λ.

The shrinkage parameters γ2 or (γ1 and γ2) are optimally chosen using the out-of-

sample R-squared constructed by cross-validation as in Kozak et al. (2020). First, we

set a grid on the shrinkage parameters γ1, and γ2. Second, we divide the sample into

H equal subsamples. Third, for each possible pair of γ1 and γ2, we compute λ̂ by using

H − 1 of these subsamples. Then, we evaluate the out-of-sample �t of the resulting

model on the single withheld subsample by computing the out-of-sample R-squared

2See the appendix for the algorithm.
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(R2
oos) as

R2
oos = 1−

(
µ2 − Σ̃2λ̂

)′ (
µ2 − Σ̃2λ̂

)
µ′2µ2

(9)

where µ2 and Σ̃2 are respectively the sample mean and covariance of the factors from

the withheld subsample. We do this exercise H times and for each time, we treat a

di�erent subsample as the out-of-sample data. Finally, we de�ne the cross-validated

R2
cv−oos as the average of the R

2
oos across these H estimates and choose γ1 and γ2 that

generates the highest R2
cv−oos as the optimal values.

3 Data

As mentioned in the introduction, the empirical part of this paper employs three data

sets. First, we use the Fama-French 25 ME/BM-sorted (FF25) portfolios dowloaded

from Kenneth R. French website. The two other data sets are built using individual

stock characteristics. We start by all the �rms' stocks available on the Center for

Research in Security Prices (CRSP) and take the accounting data from Compustat. The

data from CRSP are monthly/daily and the one from Compustat are quarterly. Our

�nal data is a set of daily/monthly returns spanning the period from November 1973 to

December 2019. For each date t and from each stock s ∈ 1, 2, ..., nt, we build �fty stock-

characteristic portfolios (see Table 1) following the common de�nition of anomalies

(Novy-Marx and Velikov (2016), Kozak et al. (2020)) :
(
xis,t
)
s∈1,2,...,nt; i∈1,2,...,50; t∈1,2,...,T

,

where nt is the number of stocks at time t for which we can calculate the anomaly

variable. Following Freyberger et al. (2020) and Kozak et al. (2020), we perform a rank-

transformation denoted rxis,t before normalizing that rank-transformed characteristic to

obtain the �nal zero-investment long-short portfolios denoted zis,t. First, we rank all

stocks for which data are available based on xis,t for each i, t. Second, we compute rx
i
s,t

and zis,t as follows :
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rxis,t =
rank(xis,t)

1 + nt
(10)

zis,t =
rxis,t −

1

nt

∑nt

s=1 rx
i
s,t∑nt

s=1 |rxis,t −
1

nt

∑nt

s=1 rx
i
s,t|

(11)

The anomalies are monthly for anomalies using CRSP variables and quarterly for an-

omalies whose calculations use accounting variables. To obtain daily factor returns,

we assumed that the anomalies take the same values for each day within the month

or the quarter. Third, the raw characteristic factors are obtained by : RCt = Z ′t−1Rt

where Zt is a nt-by-50 matrix containing the z
i
s,t for all s, i and Rt is a nt-by-1 vector of

daily returns from CRSP. Before doing this interaction, we remove all small capitaliza-

tion stocks with capitalization under 0.01% of the aggregate market capitalization for

each t from the data. Furthermore, we orthogonalized each factor returns with respect

to the CRSP value-weighted index return using β's estimated with the full sample.

Then, we rescaled the portfolio returns to have their standard deviations equal to the

in-sample standard deviation of the excess returns on the CRSP value-weighted index

returns which we took as the market index. We computed the excess returns using the

one-month Treasury bill rate. The �rst data is the Fama-French 25 portfolios. Our

second data set is the time series of the �fty raw characteristic excess returns we just

computed.

3.1 Interactions

We add interaction terms to the second data set to constitute the third data set. The

aim of the use of this database is to compare the nonlinearity introduced by Kozak et al.

(2020), which requires a very high-dimensional data set (2,600 factors), to the empirical

performance of the nonlinearity introduced by Gunsilius and Schennach (2021), which

require less nonlinear factors. The interaction-term weights on the individual stocks

are constructed as follows:
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zijs,t =
zis,tz

j
s,t −

1

nt

∑nt

s=1 z
i
s,tz

j
s,t∑nt

s=1 |zis,tz
j
s,t −

1

nt

∑nt

s=1 z
i
s,tz

j
s,t|

(12)

ziis,t =
(zis,t)

2 − 1

nt

∑nt

s=1(zis,t)
2

∑nt

s=1 |(zis,t)2 − 1

nt

∑nt

s=1(zis,t)
2|

(13)

ziiis,t =
(zis,t)

3 − 1

nt

∑nt

s=1(zis,t)
3

∑nt

s=1 |(zis,t)3 − 1

nt

∑nt

s=1(zis,t)
3|

(14)

3.2 Nonlinear principal components

As stated in the methodology section, this paper uses a grid-point procedure to estimate

the Brenier map needed to compute the nonlinear factors. We extract the nonlinear

factors using either the �fty raw characteristics data or the Fama-French 25 portfolios.

To reduce the computation burden, we adopt a hybrid procedure. First, one extracts

the linear principal components, henceforth LF from the �fty raw characteristics (or

the Fama-French 25 portfolios). Second, we compute k nonlinear principal components,

hereafter NLF from the �rst k linear principal components (LF1, LF2, ..., LFk)
3. The

rationale for this approach rests on the premise that the nonlinearity comes from the

linear factors with the highest eigenvalues, the ones that capture the most information.

As mentioned before, we need to reconcile the statistical factor extraction and the

�nancial factors extraction by constructing portfolios mimicking NLF . For robustness

purposes, we consider three regression strategies for constructing the mimicking port-

folios. The �rst two regressions estimate the mimicking portfolios in the usual way. It

consists in projecting the factors on a set of basis assets. We add a third regression

to account for the nonlinearity by adding piecewise linear functions (see Glosten and

Jagannathan (1994) and Diez De Los Rios and Garcia (2011)). Henceforth, we will

denote the mimicking portfolios MP .

3See appendix for the computation details.
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NLFj,t = β0,j + β′c,jRCt + εj,t t = 1, ..., T (15)

NLFj,t = β0,j + β1,jrmkt,t + β′c,jRCt + εj,t t = 1, ..., T (16)

NLFj,t = β0,j + β1,jrmkt,t + β′c,jRCt + δjmax(rmkt,t − lj, 0) + εj,t t = 1, ..., T (17)

where the βs and δs are the regression coe�cients, RCt stands for the raw characteristics

excess returns, rmkt,t for the market excess returns, and εj,t for the error terms. The

returns of the mimicking portfolios will be the predicted values of these regressions

MP = ˆNLF . In the following section 4, we will present the basic case and we put the

robustness checking analysis in the appendix 8.

Let LF−k be a set of 50 − k linear principal components, excluding the �rst k lin-

ear PCs and let MP (k) and NLF (k) be respectively a set of k mimicking portfolios

from the third regression and nonlinear PCs. In the basic case, we price [LF−k,MP (k)]

using risk factors derived from [LF−k,MP (k)]. Namely, µ = E([LF−k,MP (k)]),Σ =

Cov([LF−k,MP (k)]). To check the robustness of our results, we use directly the non-

linear principal components in the risk factors instead of their mimicking portfolios.

Thereby, µ = E([LF−k,MP (k)]),Σ = Cov([LF−k, NLF
(k)])

4 Results

4.1 Fama-French 25 ME/BM-sorted portfolios

To acquire an intuition about the potential for capturing nonlinearities with the NLPC

methodology, we start our analysis with the Fama-French 25 ME/BM-sorted portfolios.

The properties of this set of test assets are well-known from previous studies, but most

of the time in a linear factor-model context.4 We consider �ve speci�cations for the

stochastic discount factor and present the optimal model in Table 2 in terms of out-of-

sample R2, Sharpe ratio of the mean-variance e�cient portfolio, and scale parameter

4Ghosh et al. (2019) build a one-factor SDF from a large cross-section of equity portfolios based
on entropy and show that it delivers smaller out-of-sample pricing errors and a better cross-sectional
�t than leading factor models, in particular the three-factor Fama-French model that we consider in
our analysis. The so-called information theoretic SDF is highly positively skewed and leptokurtic,
and therefore captures nonlinearities in the test assets that imply compensation in the observed risk
premia.
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κ.

First, we estimate the SDF using all the 25 portfolio excess returns as factors

(column 1). Second, we do the same exercise but using the 25 principal compon-

ents extracted from the Fama-French 25 ME/BM-sorted portfolios as factors (column

2). Third, we estimate an hybrid model where we replace the �rst two linear principal

components by two mimicking portfolios of the nonlinear factors extracted from the

�rst two linear factors. This hybrid speci�cation is reasonable because the nonlinearity

dwell in the principal component with the highest variances or eigenvalues as mentioned

before. Fourth, we estimate Fama-French 3-factor model, and �nally we estimate the

SDF using just 2-nonlinear factors. From the comparison of the performance of these

speci�cations in Table 2, we draw three main observations. Compared to the linear

models, the nonlinear speci�cations lead to a higher out-of-sample R2
cv−oos, a higher

Sharpe ratio of the MVE portfolio, and a lower κ, which means that we impose more

L2 shrinkage when we consider nonlinear factors.

4.2 Fifty Anomaly Portfolios

We now apply the same methodology to a set of �fty portfolios sorted according to

di�erent stock characteristics as in Kozak et al. (2020). We will proceed in a similar

way as with the Fama-French 25 ME/BM-sorted portfolios by comparing linear spe-

ci�cations and parsimonious nonlinear speci�cations. We gather our results about the

stochastic discount factor speci�cations in Figures 5, 6, 7, and 8. In the �rst two �gures,

we show the out-of-sample R2's of a model using �fty raw characteristic excess returns

(Figure 5), and a model using �fty linear principal components (Figure 6). We can

see the di�erence between those two speci�cations as in Kozak et al. (2020). The left

panel shows the R2
oos in color map under the dual penalty. The right panel shows in red

the R2
oos pattern for di�erent values of the tuning parameter or equivalently the Sharpe

Ratio. From these graphs, we conclude that the projection of the SDF on the linear

principal components space requires less factors to attain the maximum R2
oos compared

to the projection into the raw characteristics space, and that the di�erence between the

two approaches in terms of the highest R2
oos is small.

We now look at the projection of the stochastic discount factor into the hybrid space

where we replace the �rst k linear factors (k = 2 for Figure 7 and k = 3 for Figure 8)
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by k mimicking portfolios of the nonlinear factors. In these graphs, we are pricing �fty

factors (made of k mimicking portfolios and 50 − k linear factors. For both k values,

we observe that we need fewer factors compared to the linear case in 5 to reach the

maximum R2
oos under the elastic net penalty. With about 5 factors, the R2

oos is now

around 0.5. The LARS-EN algorithm adds the factors starting by the model with all the

mimicking portfolios of the nonlinear factors. The mimicking portfolios are always kept

among the selected factors in the optimal model. We can conclude that thry capture

more information than the linear factors that they replace since less factors are selected

in the optimal model. In the right-nad panels of Figures 7 and 8, which feature the

R2
oos under the ridge penalty (γ1 = 0), we also report values higher than 50% compared

to a bit more than 20% with the linear-factor analysis in Figure 5.

4.3 Linear factors versus mimicking portfolios

We have put forward the importance of introducing nonlinearity in the stochastic dis-

count factor estimation by replacing the linear factors with the highest variances by the

mimicking portfolios of the nonlinear factors. As a matter of fact, the out-of-sample R2

in average increases from 0.49 to 0.65 for the Fama-French 25 ME/BM-sorted portfolios

data and from 0.22 to 0.55 for the �fty anomaly portfolios data. To better understand

where this improvement comes from, we provide in Figures 9 and 10 a plot of the re-

spective weights (
wi∑
|wi|

) of the �rst two linear factors and the �rst two mimicking

portfolios for the �fty anomalies and the twenty-�ve Fama-French portfolios. Let us

�rst look at the characteristics portfolios. For the �rst factor, the main di�erences in

exposures appear for idiosyncratic volatility, beta arbitrage, composite issuance, price

and share volume. The weights for the other portfolios remain very similar between

the linear and the mimicking portfolios. For the second factor, we observe di�erences

for most factors, albeit with varied magnitudes. The large ones occur mainly for char-

acteristics linked to momentum. The di�erences are much less apparent for the 25

FF portfolios, which is consistent with the fact that the portfolios are built with two

characteristics, size and book-to-market, but we observe small di�erences for most of

the portfolios for the �rst factor. There are relatively no signi�cant di�erences between

the linear and the mimicking portfolios for the second factor.
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4.4 Interactions : Very high-dimensional data

In order to compare the nonlinearity introduced in this paper with the one of Kozak

et al. (2020), we include in Figure 11 the R2
oos for the dual penalty both in the raw

characteristics space and in the linear principal components space with the full set of

2600 portfolios of raw characteristics built by Kozak et al. (2020). It is important to

emphasize that the optimal achievable R2
ooss are not comparable with the results from

our approach since we are not pricing the same assets. However, we can see in the right-

hand panel that the optimal performance is obtained for a small number of PCs but that

the maximum R2
oos in the vicinity of 35%. It tells at least that our more parsimonious

approach to construct nonlinear factors achieves a competitive performance.

5 Conclusion

This paper shows how truly independent nonlinear factors alongside linear principal

components improve the prediction of future expected returns . We use the Fama-

French 25 ME/BM-sorted portfolios and �fty anomaly portfolios built using individual

stock characteristics to reveal the strengths of the truly independent nonlinear principal

components. Then, we estimate the expected returns or equivalently the stochastic

discount factor using risk factors derived from raw characteristic excess returns, lin-

ear principal component portfolio returns and nonlinear principal component (mimick-

ing) portfolio returns. The hybrid model �using both nonlinear and linear principal

components� requires less risk factors to achieve the highest out-of-sample performance

compared to a model using only linear factors or a model projected into the raw charac-

teristic returns. Plotting the weights of the anomalies on the linear principal component

portfolios and the portfolios mimicking the nonlinear factors, we �nd a weight shifting

on some anomalies. Our results that nonlinear principal components should be con-

sidered when the SDF is built with many anomalies since nonlinearities are likely to

appear.
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6 Tables

Table 1: List of anomalies

Abbreviation Name of the anomaly

accruals Accruals Follows Sloan (1996).

agrowth Asset Growth Follows Cooper et al. (2008)

aturnover Asset Turnover Follows Soliman (2008).

cfp Cash Flow / Market Value of Equity Follows Lakonishok et al. (1994).

ciss Composite Issuance Follows Daniel and Titman (2006).

ep Earnings/Price Follows Basu (1977).

gltnoa Growth in LTNOA Follows Fair�eld et al. (2003).

gmargins Gross Margins Follows Novy Marx (2013a).

inv Investment Follows Chen et al. (2011); Lyandres et al. (2007).

igrowth Invetment Growth Follows Xing (2008).

invcap Investment-to-Capital Follows Xing (2008).

indmomrev Industry Momentum-Reversal Follows Moskowitz and Grinblatt (1999).

indrrev Industry Relative Reversals Follows Da et al. (2013)

indrrevlv Industry Relative Reversals (Low Volatility) Follows Da et al. (2013).

lrrev Long-term Reversals Follows DeBondt and Thaler (1985).

mom11 Momentum (11m) Follows Jegadeesh and Titman (1993)

mom6 Momentum (6m) Follows Jegadeesh and Titman (1993)

indmom Industry Momentum Follows Moskowitz and Grinblatt (1999).

valmom Value-Momentum Follows Novy Marx (2013b).

momrev Momentum-Reversal Follows Jegadeesh and Titman (1993).

nissa Share Issuance (annual) Follows Ponti� and Woodgate (2008)

noa Net Operating Assets Follows Hirshleifer et al. (2004).

noaa Net Operating Assets Follows Kozak et al paper

price Follows Blume and Husic (1973).

roa Return on Assets Follows Chen et al. (2011).

roaa Return on Assets (annual) Follows Chen et al. (2011).

roe Return on Book Equity Follows Chen et al. (2011)

season Seasonality Follows Heston and Sadka (2008).

Continued on next page
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Table 1 � continued from previous page

Abbreviation Name of the anomaly

sgrowth Sales Growth Follows Lakonishok et al. (1994)

shvol Share Volume Follows Datar et al. (1998).

size Follows Fama and French (1993b)

strev Short-term Reversal Follows Jegadeesh (1990).

sue Standardized Unexpected Earning Follows Foster et al. (1984).

value Follows Fama and French (1993b)

valuem Value (monthly) Follows Asness and Frazzini (2013).

prof Gross Pro�tability Follows Novy Marx (2013a).

valprof Value-Pro�tability Follows Novy Marx (2013b).

F-score Piotroski?s F -score Follows Piotroski (2000).

debtiss Debt Issuance Follows Spiess and A�eck-Graves (1999).

repurch Share Repurchases Follows Ikenberry et al. (1995).

divp Dividend Yield Follows Naranjo et al. (1998).

lev Leverage Follows Bhandari (1988).

sp Sales-to-Price Follows Barbee Jr et al. (1996).

valmomprof Value-Momentum-Pro�tability Follows Novy Marx (2013b).

shortint Short Interest Follows Dechow et al. (1998).

nissm Share Issuance (monthly) Follows Ponti� and Woodgate (2008).

rome Return on Market Equity Follows Chen et al. (2011).

ivol Idiosyncratic Volatility Follows Ang et al. (2006).

beta Beta Arbitrage Follows Cooper et al. (2008).

ciss Composite Issuance Follows Daniel and Titman (2006).

age Firm Age Follows Barry and Brown (1984).
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Table 2: Comparison of Linear and Nonlinear Speci�cations

25RR 25LF HM 3FF 2NL

R2
oos 0.4403 0.4948 0.6765 0.5387 0.6184

κ 0.4011 0.2913 0.3149 0.1706 0.3430

SR 0.501 0.4758 0.7788 0.4610 0.3553
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7 Figures

(a) Dual penalty (b) L2 penalty

Figure 1: Raw 25 anomaly portfolios In the left panel, we plot in a color map the out-of-

sample cross-sectional R2 (R2
oos) -calculated using 3-fold cross-validation- of the regression of

the expected returns on the covariance matrix (risk factors) under the Elastic-Net penalty. In

the right panel, we plot the R2
oos (solid red) -calculated using 3-fold cross-validation- and the

in-sample cross-sectional R2
is (dashed black) of the regression of the expected returns on the

covariance matrix (risk factors) under the Ridge penalty (γ1 = 0). The con�dence interval of

the R2
oos, i.e. R

2
oos ± 1s.e. is drawn with dotted lines.

(a) Dual penalty (b) L2 penalty

Figure 2: PCs 25 anomaly portfolios In the left panel, we plot in a color map the out-of-

sample cross-sectional R2 (R2
oos) -calculated using 3-fold cross-validation- of the regression of

the expected returns on the covariance matrix (risk factors) under the Elastic-Net penalty. In

the right panel, we plot the R2
oos (solid red) -calculated using 3-fold cross-validation- and the

in-sample cross-sectional R2
is (dashed black) of the regression of the expected returns on the

covariance matrix (risk factors) under the Ridge penalty (γ1 = 0). The con�dence interval of

the R2
oos, i.e. R

2
oos ± 1s.e. is drawn with dotted lines.
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(a) Dual penalty (b) L2 penalty

Figure 3: Hybrid FF25P using 2 nonlinear factors +23 linear factors In the left

panel, we plot in a color map the out-of-sample cross-sectional R2 (R2
oos) -calculated using

3-fold cross-validation- of the regression of the expected returns on the covariance matrix

(risk factors) under the Elastic-Net penalty. In the right panel, we plot the R2
oos (solid red)

-calculated using 3-fold cross-validation- and the in-sample cross-sectional R2
is (dashed black)

of the regression of the expected returns on the covariance matrix (risk factors) under the

Ridge penalty (γ1 = 0). The con�dence interval of the R2
oos, i.e. R

2
oos ± 1s.e. is drawn with

dotted lines.

(a) Dual penalty (b) L2 penalty

Figure 4: Hybrid FF25P using 3 nonlinear factors +22 linear factors In the left

panel, we plot in a color map the out-of-sample cross-sectional R2 (R2
oos) -calculated using

3-fold cross-validation- of the regression of the expected returns on the covariance matrix

(risk factors) under the Elastic-Net penalty. In the right panel, we plot the R2
oos (solid red)

-calculated using 3-fold cross-validation- and the in-sample cross-sectional R2
is (dashed black)

of the regression of the expected returns on the covariance matrix (risk factors) under the

Ridge penalty (γ1 = 0). The con�dence interval of the R2
oos, i.e. R

2
oos ± 1s.e. is drawn with

dotted lines.
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(a) Dual penalty (b) L2 penalty

Figure 5: Raw 50 anomaly portfolios. In the left panel, we plot in a color map the out-of-

sample cross-sectional R2 (R2
oos) -calculated using 3-fold cross-validation- of the regression of

the expected returns on the covariance matrix (risk factors) under the Elastic-Net penalty. In

the right panel, we plot the R2
oos (solid red) -calculated using 3-fold cross-validation- and the

in-sample cross-sectional R2
is (dashed black) of the regression of the expected returns on the

covariance matrix (risk factors) under the Ridge penalty (γ1 = 0). The con�dence interval of

the R2
oos, i.e. R

2
oos ± 1s.e. is drawn with dotted lines.

(a) Dual penalty (b) L2 penalty

Figure 6: PCs 50 anomaly portfolios. In the left panel, we plot in a color map the out-of-

sample cross-sectional R2 (R2
oos) -calculated using 3-fold cross-validation- of the regression of

the expected returns on the covariance matrix (risk factors) under the Elastic-Net penalty. In

the right panel, we plot the R2
oos (solid red) -calculated using 3-fold cross-validation- and the

in-sample cross-sectional R2
is (dashed black) of the regression of the expected returns on the

covariance matrix (risk factors) under the Ridge penalty (γ1 = 0). The con�dence interval of

the R2
oos, i.e. R

2
oos ± 1s.e. is drawn with dotted lines.
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(a) Dual penalty (b) L2 penalty

Figure 7: Hybrid 50 factors using 2 nonlinear factors +48 linear factors. In the left

panel, we plot in a color map the out-of-sample cross-sectional R2 (R2
oos) -calculated using

3-fold cross-validation- of the regression of the expected returns on the covariance matrix

(risk factors) under the Elastic-Net penalty. In the right panel, we plot the R2
oos (solid red)

-calculated using 3-fold cross-validation- and the in-sample cross-sectional R2
is (dashed black)

of the regression of the expected returns on the covariance matrix (risk factors) under the

Ridge penalty (γ1 = 0). The con�dence interval of the R2
oos, i.e. R

2
oos ± 1s.e. is drawn with

dotted lines.

(a) Dual penalty (b) L2 penalty

Figure 8: Hybrid 50 factors using 3 nonlinear factors +47 linear factors. In the left

panel, we plot in a color map the out-of-sample cross-sectional R2 (R2
oos) -calculated using

3-fold cross-validation- of the regression of the expected returns on the covariance matrix

(risk factors) under the Elastic-Net penalty. In the right panel, we plot the R2
oos (solid red)

-calculated using 3-fold cross-validation- and the in-sample cross-sectional R2
is (dashed black)

of the regression of the expected returns on the covariance matrix (risk factors) under the

Ridge penalty (γ1 = 0). The con�dence interval of the R2
oos, i.e. R

2
oos ± 1s.e. is drawn with

dotted lines.
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(a) LF1 versus MP1 (b) LF2 versus MP2

Figure 9: 50 anomaly data. These graphs plot the weight of the anomalies on the �rst two

linear factors and mimicking portfolios

(a) LF1 versus MP1 (b) LF2 versus MP2

Figure 10: FF25P data. These graphs plot the weight of the 25 Fama-French portfolios on

the �rst two linear factors and mimicking portfolios
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(a) 2600 raw characteristics (b) PCs of 2600 raw characteristics

Figure 11: 50 anomaly + interaction terms data. We plot in a color map the out-of-

sample cross-sectional R2 (R2
oos) -calculated using 3-fold cross-validation- of the regression of

the expected returns on the covariance matrix (risk factors) under the Elastic-Net penalty. In

the left panel, we rotate the stochastic discount factor in the raw characteristics space and in

the right panel, we rotate the stochastic discount factor in the linear principal components

space.
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8 Appendix

8.1 Robustness check

We put in this section additional �gures (12, 13, 14, 15) concerning the robustness

case scenario for the Fama-French 25 ME/BM-sorted portfolios and the �fty anomaly

portfolios. For robustness purposes, we replace the �rst k linear factors directly by the

nonlinear principal components in the risk factors instead of their mimicking portfolios.

And price a set of portfolios containing n factors where we replace the �rst k linear

principal components by k mimicking portfolios. Moreover, we let the LARS-EN al-

gorithm adds the factors starting by the model with no risk factors instead of starting

by the model with our k mimicking portfolios as risk factors. The �gures con�rm the

results presented in the section 4. We checked the robustness of the mimicking portfo-

lios (nonlinear) factors are always in the optimal model giving the highest R2
oos. Our

hybrid factors models outperform the linear models.

8.2 Least Angle Regression

1. Initialize λ̂(0) = 0, A = argmaxj|Σ′jµ|, ∇λ̂
(0)
A = −sign(Σ

′
Aµ),∇λ̂(0)

I = 0, n = 0.

2. While I 6= ∅ do ;

3. δj = min+
j∈A− λ̂(n)

∇λ̂(n)
j

4. δi = min+
i∈I

{
(Σi+Σj)′(µ−Xλ̂(n))

(Σi+Σj)′(Σ∇λ̂(n))
,

(Σi−Σj)′(µ−Σλ̂(n))

(Σi−Σj)′(Σ∇λ̂(n))

}
where j is any index in A.

5. δ = min(δj, δi)

6. if δ = δj then move j from A to I else move i from I to A.

7. λ̂(n+1) = λ̂(n) + δ∇λ̂(n)

8. ∇λ̂(n+1)
A = −1

2
(ΣA + γ2I)−1 .sign(λ̂

(n+1)
A )

9. Update the value of n=n+1

10. end while

11. Output the series of coe�cients Λ = (λ̂(0), λ̂(1), ..., λ̂(k))
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8.3 Nonlinear principal components estimation

We normalize each linear factor to have 0 mean and 1 standard deviation LF0=(lf01,...,lf0k)

and set a grid on the standardized data lfm, m ∈ {1...ng}k where

lfmi ∈ min(lf0i) :
max(lf0i)−min(lf0i)

ng − 1
: max(lf0i), i = 1, ..., k

The estimation of the density function g(lfm) is done by kernel smoothing. Then the

convex function C is computed via gradient descent algorithm using

Cn+1(lfm) = Cn(lfm) + τ(g(lfm)− Φ(
∂Cn(lfm)

∂lfm
)det(

∂2Cn(lfm)

∂lfm∂lf
′
m

) (18)

All the derivatives are computed using centered �nite di�erences :

Tj(lfm) ≈ ∂Cn(lf)

∂lf j

=
Cn(lfm+∆j

)− Cn(lfm−∆j
)

2 ∗ step
, j = 1, 2, ..., k

and

∂2Cn(lfm)

∂lfi∂lf
′
j

≈
Cn(lfm+∆j+∆i

)− Cn(lfm−∆j+∆i
)− Cn(lfm−∆i+∆j

) + Cn(lfm−∆j−∆i
)

||lfm+∆i
− lfm−∆i

||||lfm+∆j
− lfm−∆j

||

For any boundary points, we use an appropriate noncentered �nite di�erences version

that is second-order accurate. Let us denote C∗ the optimal convex function and by

x∗m = T (lfm) the transformed data. The nonlinear principal components are obtained

by diagonalizing the matrix J de�ned by :

J =
∑

m∈{1...ng}k
Φ(x∗m)lnJ(lfm)

d∏
j=1

||x∗m+∆j
− x∗m−∆j

||
2

where J(lf) =
∂2C∗(lf)

∂lf∂lf ′ . The eigenvectors of J associated to the k highest eigenvalues :

e1...ek. Finally, we interpolate the Brenier map to have the full nonlinear transformation

of the original data T (LF1, LF2, ..., LFk). Therefore, the i
th nonlinear factor is NLFi =

T (LF1, LF2, ..., LFk)ei.
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(a) Dual penalty (b) L2 penalty

Figure 12: Hybrid FF25P using 2 nonlinear factors +23 linear factors. In the left

panel, we plot in a color map the out-of-sample cross-sectional R2 (R2
oos) -calculated using

3-fold cross-validation- of the regression of the expected returns on the covariance matrix

(risk factors) under the Elastic-Net penalty. In the right panel, we plot the R2
oos (solid red)

-calculated using 3-fold cross-validation- and the in-sample cross-sectional R2
is (dashed black)

of the regression of the expected returns on the covariance matrix (risk factors) under the

Ridge penalty (γ1 = 0). The con�dence interval of the R2
oos, i.e. R

2
oos ± 1s.e. is drawn with

dotted lines.

(a) Dual penalty (b) L2 penalty

Figure 13: Hybrid FF25P using 3 nonlinear factors +22 linear factors In the left

panel, we plot in a color map the out-of-sample cross-sectional R2 (R2
oos) -calculated using

3-fold cross-validation- of the regression of the expected returns on the covariance matrix

(risk factors) under the Elastic-Net penalty. In the right panel, we plot the R2
oos (solid red)

-calculated using 3-fold cross-validation- and the in-sample cross-sectional R2
is (dashed black)

of the regression of the expected returns on the covariance matrix (risk factors) under the

Ridge penalty (γ1 = 0). The con�dence interval of the R2
oos, i.e. R

2
oos ± 1s.e. is drawn with

dotted lines.
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(a) Dual penalty (b) L2 penalty

Figure 14: Hybrid 50 anomaly portfolios using 2 nonlinear factors +48 linear factors

In the left panel, we plot in a color map the out-of-sample cross-sectional R2 (R2
oos) -calculated

using 3-fold cross-validation- of the regression of the expected returns on the covariance matrix

(risk factors) under the Elastic-Net penalty. In the right panel, we plot the R2
oos (solid red)

-calculated using 3-fold cross-validation- and the in-sample cross-sectional R2
is (dashed black)

of the regression of the expected returns on the covariance matrix (risk factors) under the

Ridge penalty (γ1 = 0). The con�dence interval of the R2
oos, i.e. R

2
oos ± 1s.e. is drawn with

dotted lines.

(a) Dual penalty (b) L2 penalty

Figure 15: Hybrid 50 anomaly portfolios using 3 nonlinear factors +47 linear factors

In the left panel, we plot in a color map the out-of-sample cross-sectional R2 (R2
oos) -calculated

using 3-fold cross-validation- of the regression of the expected returns on the covariance matrix

(risk factors) under the Elastic-Net penalty. In the right panel, we plot the R2
oos (solid red)

-calculated using 3-fold cross-validation- and the in-sample cross-sectional R2
is (dashed black)

of the regression of the expected returns on the covariance matrix (risk factors) under the

Ridge penalty (γ1 = 0). The con�dence interval of the R2
oos, i.e. R

2
oos ± 1s.e. is drawn with

dotted lines.
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