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Motivation

I Look for a parsimonious stochastic discount factor (SDF) ;
I Increasing number of factors explaining the cross-section (CS)

(Factor zoo.)
I Kozak et al. (2020) show the importance of rotating the SDF

into a transformed space.
I Prior literature : Rotate the SDF into the space of linear

principal components (PCs) ;
I This paper : Rotate the SDF into the space of nonlinear

principal components ;
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This paper

I How effective truly independent nonlinear factors are in pricing
assets ?



Asset Pricing with Nonlinear Principal Components 4 / 31

Contribution

I First paper to empirically test the effectiveness truly
independent nonlinear factors
I In an asset pricing involving the identification of an SDF that

prices the CS of stocks.
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Findings

I For different fixed cross-sections of returns, the nonlinear SDF
consistently outperforms the linear specification ;
I For the FF25P : 65% versus 49%
I For the 50 anomalies : 55% versus 22%

I Nonlinear SDF requires less factors.
I For the 50 anomalies : 5 factors versus 15-20 factors
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Related literature

I Nonlinear factors : Chen et al. (2009), Lawrence (2012),
Gunsilius and Schennach (2019), Damianou et al. (2021)

I Machine learning asset pricing models : Feng et al. (2018),
Nakagawa et al. (2019), Chen et al. (2020), and Fang and
Taylor (2021).

I Stochastic discount factor estimation : Fama and Kenneth
(1993), Hou et al. (2015), Fama and French (2015), Barillas
and Shanken (2018) and Kozak et al. (2018).
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Data

I Anomalies considered : 50 anomaly characteristics (same as
Kozak et al.(2020)) ;

I Daily returns data from November 1973 to December 2019
(2017 for Kozak et al.(2020)) ;

I Follow the same anomalies definition as Kozak et al.(2020) to
construct the anomalies.
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Empirical methodology

I Let rt = (r1,t , ..., rN,t)′ be the vector of excess returns of N
portfolios, t=1,...,T

I Let Zt be a N-by-k matrix of asset anomaly characteristics ;
I Let Ft = Z ′t−1rt be a k-by-1 vector of factors (raw

characteristic returns or linear PCs or nonlinear PCs) ;
I Let Σ = Cov(F ) be a k-by-k variance-covariance matrix of the

factors ;
I Let µ = E(F ) be a k-by-1 vector of expected factor returns ;
I SDFt = 1− λ′(Ft − EFt)
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Empirical methodology

We impose two kind of penalties to estimate the SDF coefficients :

L2pen : λ̂ = arg min
λ

(µ− Σλ)′Σ−1(µ− Σλ) + γλ′λ (1)

L1L2pen : λ̂ = arg min
λ

(µ− Σλ)′Σ−1(µ− Σλ) + γ1

k∑
i=1
|λi |+ γ2λ

′λ

(2)

I Estimate the parameter λ̂ via Ridge or Elastic net using
LAR-EN ;

I choose optimally the tuning parameters γ or ( γ1 and γ2). Σ is
a k-by-k matrix, µ is a k-by-1 vector and λ is a k-by-1 vector.
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LARS-EN(1/2)

I For each γ2, the problem (2) is equivalent to a lasso problem
(3) ;

I So, for each γ2 we use the modified LARS algorithm to solve
the problem (3) equivalently the problem (2).

λ̂ = arg min
λ

(µ∗ − Σ∗λ)′(µ∗ − Σ∗λ) + γ1

k∑
i=1
|λi | (3)

where µ∗ = (Σ− 1
2µ, 0)′ and Σ∗ = (Σ 1

2 ,
√
γ2I)′

I For each γ2, we execute the algorithm described in the next
slide to estimate λ̂.
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LARS-EN(2/2)
1. Initialize λ̂(0) = 0, A = argmaxj |Σ′jµ|,
∇λ̂(0)
A = −sign(Σ′

Aµ),∇λ̂(0)
I = 0, n = 0.

2. While I 6= ∅ do ;
3. δj = min+

j∈A−
λ̂(n)

∇λ̂(n)
j

4. δi = min+
i∈I

{
(Σi +Σj )′(µ−X λ̂(n))
(Σi +Σj )′(Σ∇λ̂(n)) ,

(Σi−Σj )′(µ−Σλ̂(n))
(Σi−Σj )′(Σ∇λ̂(n))

}
where j is

any index in A.
5. δ = min(δj , δi )
6. if δ = δj then move j from A to I else move i from I to A.
7. λ̂(n+1) = λ̂(n) + δ∇λ̂(n)

8. ∇λ̂(n+1)
A = −1

2 (ΣA + γ2I)−1 .sign(λ̂(n+1)
A )

9. Update the value of n=n+1
10. end while
11. Output the series of coefficients Λ = (λ̂(0), λ̂(1), ..., λ̂(k))
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Results

L2pen : Raw characteristics and linear PCs

Figure – 50 raw characteristics Figure – 50 linear PCs
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Results

Sparsity
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Results

L1L2pen : Raw characteristics and linear PCs

Figure – 50 raw characteristics Figure – 50 linear PCs
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Results

L2pen : With interaction terms

Figure – 2600 raw char. Figure – 2600 linear PCs
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Results

L1L2pen : With interaction terms

Figure – 2600 raw char. Figure – 2600 linear PCs
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Results

Takeaway 1

I From the previous slides, the results are quite similar to the one
of Kozak et al. (2020) (replication) ;

I Let us turn to the second part of our analysis, which consist of
integrating nonlinear factors.
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Nonlinear principal component

Computation of the NLPCs

I Let rt = (r1,t , ..., rN,t) be the vector of excess returns of N
portfolios, t=1,...,T

I rt is orthogonalized with respect to the market and rescaled to
have the same standard deviations as the market ;

I Nonlinear PCs construction : Follows Gunsilius and Schennach
(2019)
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Nonlinear principal component

Computation of the NLPCs

I Extract N linear PCs from r denoted by ft = (f 1
t , ..., f N

t ) ;
I Extract the nonlinear PCs from the first k linear PCs :

yt = (f 1
t , ..., f k

t ) ;
I y has a density function g.
I Find a map T transforming g(y) into a target density Φ(x)

where x = T (y)
I Change of variable formula gives :

g(y) = Φ(T (y))det(∂T (y)
∂y ′ ) (4)

I T minimizes
∫
||T (y)− y ||2g(y)dy

I T (y) = ∂C(y)
∂y , where C is a convex function.

I C is determined by Gradient descent using equation (4)
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Nonlinear principal component

Computation of the NLPCs

I Compute

J̃ = −
∫

g(y)ln∂T (y)
∂y ′ dy (5)

I Extract k eigenvectors e = (e1, e2, ..., ek) corresponding to the
k largest eigenvalues of J̃

I Therefore, the i th nonlinear principal component is defined by :
f̃i = T (y)ei , i = 1, 2, ..., k.
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Nonlinear principal component

Application of Kozak et al. methodology to the NLPCs

50 anomaly characteristcis

I Let rt = (r1,t , ..., r50,t) be the raw characteristic excess returns ;
I Let y be the first k linear principal components ;
I Set a squared grid y with a size MxMx ...xM from -4 to 4 each

variable ;
I Estimate the Brenier map T for the grid T(y) ;
I Calculate J̃ over the grid points, then the eigenvectors

e = (e1, e2, ..., ek) ;
I Interpolate the Brenier map to have the full nonlinear

transformation of the data : T (f1, f2, ..., fk) ;
I Let f̃t = (f̃1,t , ..., f̃k,t) be the time series of the k nonlinear PCs ;
I Since the nonlinear factors are not tradable, we construct the

corresponding mimicking portfolios.
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Nonlinear principal component

Application of Kozak et al. methodology to the NLPCs

I Approximation of the NLPCs using a piecewise linear function :

f̃j,t = β0,j+β1,j rmkt,t+β′c,j rt+δjmax(rmkt,t−kj , 0)+εj,t t = 1, ...,T
(6)

I The nonlinear mimicking portfolio is :

MP2
j,t = β̂0,j+β̂1,j rmkt,t+β̂′c,j rt+δ̂jmax(rmkt,t−kj , 0) t = 1, ...,T

(7)
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Nonlinear principal component

Application of Kozak et al. methodology to the NLPCs

Terminologies

Let f−k be a set of 50-k linear PCs, excluding the first k linear PCs
and NMPk / NPCk be a set of k nonlinear MPs/PCs. k = 2, 3, ..., 6.

I Base case : Price [f−k ,NMPk ] using risk factors derived from
[f−k ,NMPk ]. In formula :
µ = E([f−k ,NMPk ]),Σ = Cov([f−k ,NMPk ])

I Robustness check : Price [f−k ,NMPk ] using risk factors
derived from [f−k ,NPCk ]. In formula :
µ = E([f−k ,NMPk ]),Σ = Cov([f−k ,NPCk ])
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Nonlinear principal component

Application of Kozak et al. methodology to the NLPCs

Terminologies

I Base case : Let the LARS-EN algorithm adds the factors
starting by the model with all the mimicking portfolios of the
NLPCs.

I Robustness check : Let the LARS-EN algorithm adds the
factors starting by the model with no risk factors ;

Results do not depend on the mimicking portfolios (MPs), so
we present the figures only for MP2
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Nonlinear principal component

Application of Kozak et al. methodology to the NLPCs

Base case : 48 PCs + 2NMPs

Figure – L1L2pen Figure – L2pen
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Nonlinear principal component

Application of Kozak et al. methodology to the NLPCs

Robustness check : 48 PCs + 2NPCs

Figure – L1L2pen Figure – L2pen
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Nonlinear principal component

Application of Kozak et al. methodology to the NLPCs

Base case : 47 PCs + 3NMPs

Figure – L1L2pen Figure – L2pen
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Nonlinear principal component

Application of Kozak et al. methodology to the NLPCs

Robustness check : 47 PCs + 3NPCs

Figure – L1L2pen Figure – L2pen
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Nonlinear principal component

Application of Kozak et al. methodology to the NLPCs

Takeaway 2

I Results do not depend on whether one use the NLPCs or the
NMPs ;
I There is a difference but it is not that much as one can see

from previous slides ;
I One explanation is the quality of the NMPs which perfectly

mimic the NLPCs ;
I Our results suggest that one should do supervised Elastic net

instead of doing unsupervised Elastic net :
I Benchmark analysis is much better than no benchmark analysis.
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Nonlinear principal component

Application of Kozak et al. methodology to the NLPCs

LF vs NLF

Figure – LF1 versus MP1 Figure – LF2 versus MP2
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Conclusion

Conclusion

I The hybrid model requires less risk factors to achieve the
highest out-of-sample performance

I Weight shifting on some anomalies. The mimicking portfolios
(MPs) and the linear factors disagree on the anomalies that are
marginal in terms of weights

I We believe that the nonlinear principal components have good
prediction power.

I Thus, they should be taken into account for the development
of future factor model.
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